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DISSERTATION TOPIC

Cancer detection and treatment has been a challenge. The reason for that
is a complexity of cancerogenesis and heterogeneity of cancer genome
mutations. Cancer genomes typically have numerous mutations. First, the
cancer genome is characterized by point mutations of a single nucleotide and
small, several base pairs deletions and insertions, called indels. Another
property of cancer genomes is formation of breakpoints which lead to
significant ~genome rearrangements (insertions, deletions, tandem
duplications, translocations) from several dozen to millions of nucleotides.
These changes make cancer genome unstable and destroy the mechanisms of
normal functioning of the cell such as division, growth and differentiation.

To get insights into cancer mutation processes, detect biomarkers and
cancer gene drivers, cancer genome consortiums were created in order to
organize collection of cancer genome data. Due to the efforts of The Cancer
Genome Atlas (TCGA) and International Cancer Genome Consortium
(ICGC) hundreds of thousands of cancer breakpoints have been documented
for different types of cancers [1], [2]. Recently, the Pan-Cancer Analysis of
Whole Genomes (PCAWG) Consortium of the ICGC and TCGA reported
the integrative analysis of more than 2500 whole-cancer genomes across 38
tumor types [3]. These consortiums made the data publicly available to
enable scientists from all over the world conduct cancer research.

In parallel with cancer genome data, omics data became available
including whole-genome maps of different epigenetic features (methylation,
chromatin accessibility, histone modifications, etc.) and of alternative DNA
conformations (Z-DNA, quadruplexes, triplexes, stem-loops). Historically,
several scientific branches were formed to study the genome from different
perspectives, having the same suffix -omics at the end of the name: genomics,
proteomics, metabolomics, transcriptomics. Cumulatively all these scientific
branches were named as omics and aimed at getting a comprehensive view
of the genome structure and function.

However, despite the large amount of cancer data available, mutagenesis
of cancer breakpoints has not yet been sufficiently studied and the quality of
prediction of cancer breakpoint prediction models was much lower than for

cancer point mutations.



The purpose of this research is to study cancer breakpoints
mutagenesis using machine learning methods. To achieve the goal the
following tasks were set:

1. collect data and analyze state-of-the-art methods for prediction of

somatic mutations and breakpoints in cancer;

2. devise rules for identification of cancer breakpoint hotspots and develop
and implement a machine learning approach for cancer breakpoint

hotspots prediction;

3. propose methods for identification of features predicting likelihood of

cancer breakpoint formation;
4. investigate hypothesis of randomness of cancer breakpoint formation;

5. check whether PU-learning methods could improve models’ quality.

KEY RESULTS

Key aspects/ideas to be defended:

1. We identified cancer breakpoint hotspots and proposed methodology

for their prediction with the help of machine learning methods.

2. The methodology was tested on real data. We developed machine
learning models for cancer breakpoint prediction and interpretation of

omics data that outperform all previous models.

3. With the developed machine learning approach, we revealed tissue-
specific impact of quadruplexes and stem-loops on cancer genome

formation.

4. With the developed approach of group-wise and feature-wise
importance analysis, we revealed that non-B DNA structures and
transcription factors are the major determinants of cancer breakpoint

formation in all cancer types.



5. With the developed approach, it was demonstrated that hotspots of
higher breakpoints density are more recognizable than the low-density

hotspots.

6. We tested two PU-learning (‘positive unlabeled”) methods and found
that inclusion of hotspots labeling uncertainty into the model could not

improve the results.

The personal author contribution is presented by data analysis and
visualization, machine learning approach development, code
implementations, writing. Maria Poptsova conceptualized the study and

assigned tasks.
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In this section we will summarize the main results and formulate

conclusions.

1. Existing approaches for prediction of cancer genome
breakpoints

Cancer genomes are unstable and undergo numerous rearrangements
resulting in origination of structural variants such as deletions, insertions,
translocations, and copy number variants. Over the last 20 years several
consortium cancer genome projects — The Cancer Genome Atlas (TCGA) [1],
International Cancer Genome Consortium (ICGC) [2], and the ICGC/TCGA
Pan-Cancer Analysis of Whole Genomes (PCAWG) Project [3] — published
the information on point and structural mutations in thousands of cancer
genomes. Identifying cancer mutation determinants is extremely important
for understanding the genomics of the disease, but the heterogeneity of cancer
genome mutations presents major difficulties in the analysis of cancer
genomes.

In cancer genomics, one of the important tasks is to understand the
factors and mechanisms lying behind the mutagenic processes. Below we
describe recent studies which wuse algorithmic and machine learning

approaches to predict cancer point mutations and breakpoints.



Algorithmic techniques for cancer point mutation and

breakpoint prediction

Before machine learning researchers employed statistical methods to
identify dependencies between different genomic factors. Then machine
learning became a widely used technique for different tasks such as different
target prediction (classification or regression), feature selection, feature
dimensionality reduction, and other tasks.

The first comprehensive study of mutation densities was conducted at 1
Mb scale and included data on gene expression, replication timing,
heterochromatin (H3K9me3 signal) and DNA mismatch repair state
(measured via microsatellite instability status) [6]. Applying Mann-Whitney
test it was shown that mismatch repair impacts the mutation rate variation
having 72% of genome windows with significant difference in mutation
frequencies. Besides, PCA analysis of 1 Mb mutation densities in samples
demonstrated the difference between cancer types by performing Mann-
Whitney test on principal components for different cancers.

Comprehensive analysis of non-coding point mutations together with
indels specifically in 212 gastric cancer genomes was done in [7]. To define
the most informative epigenetic features for modeling the somatic mutation
rate, the authors used LASSO logistic regression to regress binary mutation
status of each genome position on mean signal of features. Additionally,
logistic regression was used to model patient specific mutation probabilities
which were processed with the Poisson binomial model with the purpose to
identify mutation hotspots. The authors identified 34 mutation hotspots, of
which 11 were located in CTCF binding sites. Wilcoxon rank-sum test
showed that distance from CBS hotspot to the nearest SCNA breakpoint is
shorter in mutated than non-mutated tumors.

In [8] vicinities of breakpoints were investigated for the presence of non-
B DNA structures. Considering the distance between G-quadruplex forming
motifs and breakpoints in fragile regions, the association between presence of
G-quadruplex and breakpoint regions was found in almost 70% of genes

involved in rearrangements in lymphoid cancers.



Analysis of almost 700 000 cancer breakpoints from 26 cancer types
revealed enrichment of the breakpoint regions with G-quadruplex forming
sequences using Mann-Whitney test [9]. Applying the same method, the
authors showed association of breakpoints hotspots with hypomethylated
states.

Comprehensive statistical analysis of translocation and deletion
breakpoints in cancer genomes confirmed significant association of
breakpoints with non-B DNA structures for a large data set (around 20 000
of translocations and 46 000 of deletions) [10]. Specifically, with Student's t-
tests for differences in the number of potential non-B DNA structures in the
regions of translocation and deletion breakpoints, it was revealed that repeats
were frequently found at the translocation breakpoints and poly-A sites were
found more frequently at the deletion breakpoints.

Statistical analysis of enrichment of DNA protein binding and open
chromatin was done for a set of 147 samples comprising 8 cancer types and
14600 structural mutations [11]. It was based on 457 ENCODE protein
binding ChIP-seq experiments, 125 DNase I and 24 FAIRE experiments. The
study presented enrichment of protein binding and open chromatin in the
vicinity of breakpoints using a two-tailed t-test for the log odds ratios of
nearby and distant regions (or their difference).

Genome-wide comparison of UV-induced DNA lesion distribution with
epigenetic feature distributions was performed for skin cancer [12]. Examining
the deviations of UV-induced DNA lesion distribution from genome median
for different chromatin states and correlations with histone modifications, it
was shown that heterochromatin is more susceptible to UV-induced DNA

lesions.

Machine learning methods for cancer point mutation and

breakpoint prediction

One of the first comprehensive machine learning studies of cancer point
mutation was performed in [4] using data on histone modifications, CTCF
binding sites, Pol-II binding sites, recombination rate, replication timing,
nucleosome positioning, gene density, and conservation level. With linear

regression the authors predicted point mutation densities at 1Mb scale and



achieved predictive power of 55% R2. With feature importance analysis, it
was revealed that one single feature — the histone modification H3K9me3 —
explains 40% of cancer point mutation variation.

In another work [5] Random Forest model explained up to 86% of cancer
point mutation density variance across different cancer types. The study
revealed that usage of cell type-specific epigenomic features (chromatin
accessibility, histone modifications and replication timing) improves the
prediction quality. The modeling also showed that the reverse task can be
solved — mutation density profiles can be used to detect type of cancer.

Predictive modeling of cancer point mutations appeared to be much more
effective than modeling breakpoints. In [13] the authors used linear regression
and Random Forest to predict both cancer point mutations and breakpoint
density in 500 kB genome windows using non-B DNA structures, histone
marks and replication timing, as the combined sets or separately. Depending
on the type of cancer combination of non-B DNA structures and epigenetic
marks could explain 43-76% of the variance while using all considered
features could give only 10% of explained variance for all cancers with an
exception of 18% for breast cancer.

Linear regression analysis of translocation breakpoint frequencies for
blood cancer and solid cancers combined [14] using chromatin density, gene
density and CTCF-binding site densities gave 18% - 39% adjusted R2 where
chromatin density was identified as the most significant factor.

Association of breakpoints with gene-rich regions was also studied in [15]
where the number of breakpoints was linearly regressed on the number of
genes. The authors achieved 40% R2 and demonstrated that association
remains highly significant for both recurrent and nonrecurrent chromosome
abnormalities.

In [18] the authors proposed an ML-approach for prediction of double-
strand breaks (DSB), that were generated by DSBcapture [16] and BLESS
[17] methods. Using such features as densities of histone marks, DNase-seq,
DNA shape parameters, CTCF and p63 binding sites at 1 kb scale Random
Forest model predicted whether the site is double-strand break with 97%
ROC AUC. This high prediction power can be explained by the biased

method of DSB generation with restriction enzyme EcoRV.



In [19] the authors studied the dependence of gene expression and
methylation of CpG islands on nearby breakpoints. Using linear regression
for the purpose, they revealed that the vicinity of the breakpoint in up to +
1 Mb region changes methylation.

2.Novel machine learning approach for cancer

breakpoints prediction

Previous attempts to predict cancer breakpoints demonstrated that this
task is not straight-forward. That is why we aimed at development of a
machine learning pipeline for cancer breakpoint prediction which will resolve

all the issues and drawbacks of the previous approaches.
Data preprocessing: choice of the aggregation level

For analysis [20] we used publicly available data from the International
Cancer Genome Consortium (ICGC) Data Portal (release 25) [21]. The data
comprised 10 cancer types (breast, bone, brain, blood, prostate, skin,
pancreatic, liver, ovary, uterus) with 2 234 samples and 487 425 breakpoints
in total where the most samples belonged to breast cancer (644 samples)
while only 72 and 16 samples accordingly were related to the brain and uterus
cancers.

To predict cancer breakpoints, we considered the most prevalent non-B
DNA structures — stem-loops and quadruplexes — which are the known
sources of chromosome instability. As our primary goal was to develop and
test a machine learning approach for the task of cancer breakpoints
prediction, we limit the set of features to these two potentially important
factors. Human genome annotations with stem-loops (three types of length:
6-15, 15-30, 16-50) were downloaded from the DNA punctuation project [22]
while annotation of the genome with G-quadruplexes was done by applying
regular expression [23|. The input data (target as well as features) were
presented in table format where each row corresponds to one genomic object
instance with designation of start and end position of this instance. To

discover the major patterns in data we needed to perform data aggregation.
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The whole genome was split in non-overlapping disjoint windows of a specific
length. Since there is no intuition about the optimal window length, we
discovered 6 different length options (hereinafter aggregation levels): 10, 20,
50, 100, 500 kb and 1 Mb. Then the data were aggregated to these windows
by mapping each instance to its window by position, calculating density for
breakpoints and coverage for features. Breakpoint density in a window is the
number of breakpoints located in a window divided by the total number of
breakpoints in the genome. Feature coverage in a given window was
calculated as the total length of all structures in the window (without
overlaps) divided by the window size.

Since cancer is a heterogeneous disease, it is important to mine common
patterns persisting in multiple samples. Earlier the notion of recurrent
breakpoints was introduced [24] where the authors fixed the set of most
frequently discovered cancer breakpoints. Here we defined breakpoint
hotspots using data-driven approach: for each cancer type we found values
of top 1%, 0.5%, 0.1%, 0.05% and 0.01% of breakpoints density distribution
and label windows with breakpoints density equal to or higher than these
thresholds as breakpoint hotspots for corresponding ‘labeling type”. After
analysis of the number of positive examples (breakpoint hotspots) for each
cancer type, aggregation level and labeling type we ended up with a total of
236 datasets for modeling while datasets with extremely small number of
positive examples or with duplicate labeling were removed from the research.
It should be noted that from a machine learning point of view in all
mentioned labeling types the task of breakpoint hotspots classification is
highly imbalanced which should be taken into account during modeling.

In addition to considered cancer types we composed a general cancer
profile (‘“overall”) using breakpoint densities in each window for each cancer

type and worldwide statistics of cancer cases’ distribution by type.
Dealing with extreme class imbalance

To develop a machine learning pipeline accounting for high class
imbalance we performed a search over different resampling schemes, machine

learning algorithms and class balancing techniques. Since the most important
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quality metrics were the recall and precision, we used their harmonic mean
in the form of Fl-score to assess model performance. During the search we
aimed at minimal overfitting, maximal performance on unseen data
(test/validation) and minimal standard deviation of the scores on unseen
data. We applied the next methods to our data:
e Resampling schemes: train-test split (50%), LOOCV (leave-one-out
cross-validation), 15-times repeated 3-fold cross-validation. The last
method was finally selected as it provides us with a performance
distribution with an estimate of the worst, the best and mean quality

values.

e Machine learning algorithm: logistic regression, random forest. Random
Forest (with stratification) in high class imbalance case demonstrated

greater overfitting than logistic regression.

e (Class balancing technique: stratification, oversampling, SMOTE.
Compared to stratification, oversampling improved the quality of hotspot

classification while SMOTE did not show improvement.

We ended up with a logistic regression model with oversampling fitted in
15-times repeated 3-fold cross-validation with z-score normalization of

features. This pipeline was applied to each of 236 datasets.

Lift of recall and lift of precision as metrics to assess model

performance

To assess model performance in case of class imbalance such metrics as
recall and precision are usually used. Since only 0.01 to 1% of samples are
represented by positive examples, the classification task is hard. To
understand whether it makes sense to use the machine learning model we
introduced such derived metrics as lift of recall and lift of precision. If a
random choice model selects n% of samples as predicted as ‘ones”, then the
recall of the model will also approximate n% (random selection of n% of
samples results in n% of examples of each class). Then we can estimate
whether the machine learning model is better than a random choice model

by dividing the ML-model recall on the probability percentile (the proportion
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of the number of marked as ‘ones” examples). If the lift of recall is greater
than one the machine learning model outperforms the random model, and
the higher, the stronger the model is. On the contrary, if the lift of recall is
less than one or approaches it, it means that the machine learning model
could not capture the relationships. Similarly, the lift of precision is defined
as a ratio of model precision to the proportion of positive examples in a
sample.

In addition to mean and median ROC AUC on the test set we reported
the lift of recall for different thresholds according to fixed probability
distribution percentiles 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%,
95%.

Choosing the best model for each cancer type

We applied the described pipeline to all 236 datasets for 3 sets of features:
only stem-loop features, only quadruplex features and both stem-loop and
quadruplexes. It was observed that the impact of these features is tissue-
specific: there were no such feature set that demonstrated the best results for
all cancer types while the direction of features impact (positive or negative)
was preserved. Table 1 presents the best achieved quality metrics among
different labeling types, aggregation levels and model specifications for each
cancer type. It could be seen that the best performance is observed for breast
and bone cancer with ROC AUC of 0.94 and 0.86 and lift of recall of 8 and
10 respectively. At the same time there are cancer types with relatively low-
quality metrics: ROC AUC 0.63 and 0.61 and lift of recall 2.05 and 1.71 for

prostate and pancreatic cancer.

Cancer type | Number of | Number of |Number of |Lift of recall | Median test
samples breakpoints | datasets (best model) | ROC AUC
(best model)

Brain 72 1 564 20 5,00 67%
Blood 118 2 330 20 4,00 67%
Bone 117 2 546 20 10,00 86%
Uterus 16 6 782 19 4,00 65%
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Liver 255 22 324 21 5,71 73%
Prostate 212 48 126 23 2,05 55%
Skin 190 54 688 23 4,00 64%
Ovary 115 71 446 22 6,67 68%
Pancreatic 495 85 769 22 1,71 57%
Breast 644 191 850 23 10,00 94%
Overall 23 6,67 2%

Table 1 Dataset stats: cancer type, number of samples, number of breakpoints, number of
datasets for prediction, quality metrics on best models (all aggregation levels and labeling types).

To sum up, the developed machine learning pipeline enabled us to
discover tissue-specificity of considered features. Tested on a small set of
features the pipeline could be applied to a wider feature set to enrich and
expand the research.

3.Cancer breakpoint prediction from omics data

Using omics data for cancer breakpoints prediction

With the development of sequencing technologies omics data became a
valuable source of information for machine learning models. Omics is aimed
at comprehensive quantification of characteristics that describe DNA from
different perspectives (structure, function, etc.). Machine learning approaches
that can aggregate multiple factors could really help in understanding cancer
breakpoint determinants. Currently, only two groups of factors — histone
modifications and non-B DNA structures were tested as predictors on large
data sets. Adding other groups from omics experiments into machine learning
approach likely will help in finding or stratifying more determinants of cancer
breakpoint formation [25].

As there was no previous research, which considered the majority of the
available at the time features to predict cancer breakpoints, we performed
such a comprehensive study using the developed machine learning approach
to get a higher model quality compared to the previous results. The research
[26] included such features as non-B DNA structures (quadruplexes, Z-DNA|
stem-loops, repeats), histone modifications (HMs), DNA methylation,
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transcription factor (TF) binding sites, chromatin accessibility (HDNase),
chromatin partitioning with topologically associated domains (TADs), and
genomic positions (whole genes, exons, introns, 5- and 3-UTRs promoters,
downstream areas).

Feature transformations

The research was limited to one aggregation level - 100 kB - that is the
most prevalent in the literature and one of the best performing according to
our results. In addition to feature coverage used earlier - hereinafter ‘local
features” — we checked whether different feature transformations could
improve model quality: binary flags of feature presence, indicators of local
(1-10 neighbors) and global coverage maximum in the window and distant
features (coverage of 1Mb window). Addition of presence flags gave no uplift
while training the model using only these features demonstrated significant
quality drop (T -0.13 ROC AUC in mean) which could be only partially
compensated by addition of maximum indicators (T -0.03 ROC AUC in
mean) which indicates that models benefit from considering exact coverage
values. However, addition of distant features to local demonstrated mean
0.03 ROC AUC uplift in general although the effect slightly differs across
cancer types. This quality gain could be explained by the fact that
combination of distant and local features enables the model to estimate
“anomaly score” of each window regarding its nearest environment. Based on
the results, these features were added to final feature set for building models.
Moreover, as shown below in Chapter 4, distant features entered the top
important features for the models.

Results

In the research [26] we slightly changed the machine learning pipeline.
First, we replaced 15-times repeated 3-fold cross-validation resampling
scheme with 30-times repeated train-test split with 30% of data in the test
sample. Secondly, we replaced logistic regression model with random forest
model as the feature set increased and became more diverse. Using this
machine learning pipeline and omics data presented as local and distant
features we built models for cancer breakpoints hotspots (99% / 99.5% /
99.9%) on 100 kb aggregation level.

Final models' quality for each cancer type is presented in Table 2. The
obtained results could be compared to two papers for cancer breakpoints

15



prediction: our previous work [20] and the study of Georgakopoulos-Soares
et al. [13].

Compared to our previous work [20] — as shown in Table 2 — models on
omics data demonstrated higher quality for all except bone cancer considering
both median test ROC AUC and lift of recall. Previously median test ROC
AUC exceeded 70% only for bone cancer while omics-based models achieved
69-86% median test ROC AUC for all cancer types except skin and bone
cancer. In addition, median lift of recall also significantly increased: median
uplift of this metric over all cancer types is 2,6 in absolute or +77,5%,
although PR AUC remained low ranging from 0,3% to 4,8%.

Cancer Omics model Omics Omics Non-B DNANon-B DNA

type Lift of recall model model model, 100 model, 100
(best model, Median test Mean test kb kb
0.03 ROC AUC PR AUC Lift of recall[Median test
probability (best model) |(best model)|(best model) ROC AUC
percentile) (best model)

Blood 5,7 75% 0,3% 2.5 65%

Bone 5,1 64% 1,8% 6,0 R0%

Brain 8,0 75% 0,5% 5,0 67%

Breast 7,6 86% 0,6% 6,7 65%

Liver 7,8 73% 0,6% 4,0 66%

Ovary 5,0 69% 2,9% 2,1 59%

Pancreatic |16,7 76% 4,8% 1,7 57%

Prostate 4,3 73% 0,4% 2,0 56%

Skin 2,6 57% 1,5% 2,2 56%

Uterus 4,0 69% 1,3% 4.0 62%

Table 2 Quality of models predicting cancer breakpoints hotspots on omics data and comparison
with previous results [20] for models with 100kb aggregation level.

Another comparable study was the study of Georgakopoulos-Soare et al.
[13] where the authors considered the regression task of cancer breakpoints
density prediction by non-B DNA structures and histone modifications. Using
the data provided by the authors we reproduced their research and then
added novel features (omics data, aggregated as local and distant feature
coverage) to predict density of the same 500 kb genome windows, keeping

feature and label transformations the same as in original work [13]. Original
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random forest model achieved a maximum 18% R-squared while addition of
novel data to the training set and addition of other omics data as predictors

improves this metric up to 34%.

4. Approach for analysis of omics data feature

importance

As in the research [26] we used many diverse (by genomic function)
features, the key task is to perform feature importance analysis to determine
key factors affecting cancer breakpoint hotspot formation. For this purpose
we first assessed group feature importance and then conducted research in

order to find the most influential individual features.
Group feature importance

Features, used in the research [26], could be grouped into several groups
by their origin: non-B DNA structures (non-B), histone modifications (HMs),
DNA methylation, transcription factor (TF) binding sites, chromatin
accessibility (HDNase), topologically associated domains (TADs), and
genomic positions. To find the most important feature group we used the
developed pipeline to get machine learning models trained on each feature
group separately for each cancer type. To rank feature groups we calculated
the maximum value of the mean lift of recall at 0.03 probability percentile
over all models for each labeling type and cancer type and then scaled the
mean lift of recall value of each feature group model by that value. As for
99% and 99.5% labeling types the results are slightly different, we average
this scale coefficient over these labeling types for each type of cancer. The
results (Fig. 1) show that the best feature group significantly (by 0.25)
outperforms others for almost all cancer types, and this value even reaches
0.5 for 3 cancers (blood, pancreas and prostate). This outperforming group
was TFs for 5 cancers (liver, skin, prostate, ovary, breast), non-B DNA
structures for 2 cancers (brain and bone) and other feature groups for one
cancer type. Analysis of top-3 feature groups by the ranking revealed that

non-B DNA features appeared in it for all cancer types and TFs — for 8 cancer
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types. Changing the evaluation metric from the lift of recall to ROC AUC
led to similar results. Additionally, from trained models we extracted
importance of features for the best performing feature groups — non-B DNA
and TFs. It was found that among non-B DNA features G-quadruplexes and
direct repeats demonstrated the highest importance while short tandem
repeats and Z-DNA also do make their contribution. Concerning
transcription factors, the most important features are less similar to each
other for different cancer types but nevertheless CTCF, GABPA, RXRA,
SP1, MAX and NR2F2 are more frequently included in top features than

other transcription factors.
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Individual feature importance
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To select the most influential features for prediction of breakpoints
hotspots for each cancer type we performed the Boruta feature selection
method. Finally, we found 50 important features with 5-23 features for one
cancer type (Fig. 2). The list included features mostly from non-B DNA, TFs
and genomic region groups which correlates with the results of group feature

importance analysis.
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Figure 2. Boruta selected feature sets by cancer type and feature group.

non-B DNA

In our previous research [27] it was shown that there is no single
breakpoint density threshold (labeling type) for hotspots identification that
demonstrates the best results for all cancer types. Moreover, it was
demonstrated that the higher the breakpoints density threshold the higher
the variance of machine learning models predicting corresponding hotspots.
Hence, we performed the Boruta feature selection procedure on 99% labeling
type as it provides the most stable results.

For each of the 30 train-test dataset splits of each cancer type the next
Boruta feature selection algorithm was applied. The method is iterative, and
each iteration considers only the set of ‘important” features defined at the
previous step while in the first iteration all features are taken into account.
On each iteration the set of shadow features is added to the set of important

features. Shadow features present the shuffled features' values so that each

19



real important feature has one of its shuffled versions in the dataset. Then
random forest model is trained on the extended dataset and feature
importance measure (mean decrease accuracy) and its z-score are calculated.
The new set of important features is composed of those real features which
have z-score higher than maximum z-score of all shadow features. The
algorithm moves to the next iteration if there are more than 5 features in the
important feature set and less than 10 iterations passed.

This algorithm selected top features for each cancer type based on 99%
labeling type. Comparing the quality of models on these features with models
on all available features revealed three cancer types (pancreatic, prostate and
breast cancer) with slightly lower quality. For these cancer types we
performed forward feature selection and found one, one and two features
respectively, which addition to feature sets led to comparable quality. The
selected top features for cancer type are presented on Fig. 2.

Analysis of top features for all cancer types combined revealed that
features of only four feature groups (non-B DNA, TFs, genomic regions and
HDNase) are included in the top list that consists of features which were
selected as important in at least 300 of 3 000 times during Boruta feature
selection procedure. The top five features include direct repeats and G-
quadruplexes, both local and distant, and transcription factor SP1, followed
by Z-DNA, short tandem repeats, mirror repeats, transcription factors
RXRA, NR2F2, GABPA, CTCF, genomic regions such as 5' UTR, coding
exons, 3' UTR, promoters and downstream areas, and HDNase, which impact
differs for cancer types. It is worth to note that the majority of important

features are presented on a distant scale.

Results

We proposed an approach for feature importance analysis of omics data.
With this approach we revealed that non-B DNA structures and
transcription factors are the most influential factors for cancer breakpoint
hotspot prediction which is approved by both group and individual feature

importance methods. Among the most important individual features the
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highest contribution came from G-quadruplexes and repeats and CTCF,
GABPA, RXRA, SP1, MAX and NR2F2 transcription factors.

5. Approach for breakpoints randomness analysis

in cancer genoies

Despite known cancer genome heterogeneity, in order to find regularities
in cancer breakpoints formation, in our previous studies we explored
recurrent /repeated breakpoints — hotspots. Nevertheless, it is important to
understand how well individual breakpoints could be predicted and whether
there is a dependency between breakpoint density thresholds and quality of
corresponding hotspots detection by machine learning model. To answer this

question, we conduct a series of experiments reported in the research [26].
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Figure 3. Comparison of models predicting hotspots and individual breakpoints. The lift of recall
is presented for 0.03, 0.05 and 0.1 probability percentile.

First, we applied the pipeline to the task of individual cancer breakpoints
prediction (Fig.3). It was found that the majority of individual breakpoints

are almost indistinguishable from other genomic windows with ROC AUC
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having values around 50% or slightly higher and the mean lift of recall — in
the range of 0 to 2.5. Nevertheless, it is worth to note that for several cancer
types (breast, ovary, prostate) ROC AUC could achieve 65-75% but the lift
of recall remains very low.

Secondly, we built machine learning models to distinguish breakpoint
hotspot regions from other genomic regions with breakpoints. It was revealed
that models that can separate hotspots from breakpoints can be as good as
models predicting hotspots, since ROC AUC reached more than 70% for
brain, liver, pancreas, and prostate cancer and 85% for breast cancer. This
fact confirms that hotspots’ locations are completely different from individual
breakpoints locations when one takes into account only considered features.

The results are presented in Fig.3.
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Figure 4. Comparison of different hotspots labeling criteria. The lift of recall is presented for
0.03, 0.05 and 0.1 probability percentile.

Finally, we tested other breakpoint density thresholds for hotspot labeling
- 75%, 90%, 95% and built machine learning models to identify genome
regions less saturated with breakpoints from other genomic regions (Fig.4).

It was shown that the increase in breakpoint hotspot labeling threshold leads
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to a higher quality of the model recognizing corresponding hotspots. On
average, decreasing the labeling threshold by 5% results in 2 times lower
mean lift of recall and 15% lower mean ROC AUC. In addition, for low
breakpoint density threshold absolute values of ROC AUC reached 60% only
for bone cancer while its average value over all cancer types is equal to 54%
with the mean lift of recall of 1.6. With this in mind, we could make a
conclusion that hotspots of higher breakpoints density differ from other

genomic regions to a greater extent than those of lower density.

6.Inclusion of data uncertainty into the model

In case when a target variable heavily relies on the distribution of a
particular variable, the data sufficiency problem could arise. If cancer
breakpoint data are not representative, then the labeling of breakpoint
hotspots may be incorrect (due to the lack of data, breakpoints density may
be underestimated, and therefore some regions of the genome will not be
labeled as hotspots). In this case, we can incorporate this uncertainty into
the model using the PU-learning approach [28, 29].

The PU-learning approach assumes that there are examples marked as
positive in the sample, while labels of all other examples are unknown (they
can be positive or negative). The task is to assign a label to all unlabeled
examples, taking into account known positive labels and all feature
distributions. In our published study, we used the PU-learning algorithm |28,
29]. The general idea of the algorithm is as follows. The classification model
is initially trained using all the unlabeled examples as negative ones. Next,
labels of the unlabeled examples are iteratively updated to convergence. At
each iteration, the current model generates predictions for all examples, and
based on 10 and 90 percentiles of the probability distribution of positive class
examples and on the width of the certainty interval, defines the upper and
lower bound. If the probability of an unlabeled example is higher than the
upper bound, then the example refers to as a reliable positive example (RP),
and if it is below than the lower bound - as a reliable negative example (RN).
At each iteration only reliably labeled examples and initial known positive

examples are used to train the model, and the process is repeated until
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convergence. The algorithm has an epsilon hyperparameter that determines
the width of the certainty interval. This algorithm was implemented in two
modes: RP (it iteratively updates both the set of positive and negative
examples) and RN (iteratively updates only the set of negative examples, the
set of positive examples is fixed as a set of initial known positive examples).
This approach was applied to all datasets for each type of cancer in the
research [30]. Fig. 5 shows for each type of cancer a confidence interval for
the average difference in the lift of recall of final models trained in RP and
RN modes. As the quality of both models is estimated on the same initial
test set, positive difference in lift of recall on a test set means that shifted
features' distribution for hotspots (during PU-learning) describes the test
sample better than the initial hotspot features' distribution, and additional
positive examples during training give a good signal for hotspot detection.
It could be noted that the sign of the difference depends on the number
of breakpoints available for the type of cancer. On the one hand, a stable
positive effect is observed for the types of cancer that are in the top 5 types
of cancer with the smallest number of breakpoints. In particular, the best
results are achieved for brain cancer, which has a minimal number of
breakpoints. Based on these data, it can be concluded that the inclusion of
additional positive examples in the case of noisy data (the markup of the
target variable may be noisy due to unrepresentative breakpoints data) helps
to improve the quality of the model using PU Learning. On the other hand,
a stable negative effect is observed for cancer types that are in the top four
types of cancer with the maximum number of breakpoints. This can be
explained by the fact that if there is enough data, additional positive

examples introduce noise.
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Figure 5. Confidence interval for the mean difference in the lift of recall for RP and RN mode

for PU learning algorithm for different probability percentiles.

Nevertheless, PU-learning methods did not improve prediction quality
compared to classic binary classification models for the considered
probability percentiles (0.03, 0.05 and 0.1): lift of recall is almost identical

for all cancer types.

CONCLUSION

In this dissertation we developed a machine learning approach to
investigate cancer breakpoint hotspot mutagenesis. The dissertation work
made contribution to the field of cancer mutagenesis revealing the key factors
associated with cancer breakpoint regions and exploring the problem of
randomness in cancer formation.

Collected breakpoint data on 10 common cancer types together with a
large set of omics data enabled us to perform comprehensive analysis of
cancer breakpoint hotspots. We designed, developed and implemented the
machine learning pipeline that was applied to the task of cancer breakpoint
prediction. We performed feature importance analysis and revealed two
feature groups — non-B DNA structures and TF binding sites, that are
important for all cancer types. We designed and implemented a set of

experiments aimed at investigation of the degree of randomness of cancer
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breakpoint hotspot formation. Finally, we compared sample sizes of
breakpoint data stratified by cancer types with the results obtained with PU
learning methods applied to the data in different setups.

The developed machine learning models trained on omics data
demonstrated, to our knowledge, the best performance for the cancer

breakpoint hotspot prediction.

REFERENCES

1. Nakagawa, H., et al. (2015). "Cancer whole-genome sequencing:
present and future." Oncogene 34(49): 5943-5950.

2. Nakagawa, H. and M. Fujita (2018). "Whole genome sequencing
analysis for cancer genomics and precision medicine." Cancer Sci 109(3):
513-522.

3. Consortium, I. T. P.-C. A. o. W. G. (2020). "Pan-cancer analysis of
whole genomes." Nature 578(7793): 82-93.

4. Schuster-Bockler B, Lehner B (2012) Chromatin organization is a
major influence on regional mutation rates in human cancer cells.
Nature 488: 504-507.

5. Polak P, Karli¢ R, Koren A, Thurman R, Sandstrom R, et al. (2015)
Cell-of-origin chromatin organization shapes the mutational landscape of
cancer. Nature 518: 360- 364.

6. Supek F, Lehner B (2015) Differential DNA mismatch repair
underlies mutation rate variation across the human genome. Nature 521:
81-84.

7. Guo YA, Chang MM, Huang W, Ooi WF, Xing M, et al. (2018)
Mutation hotspots at CTCF binding sites coupled to chromosomal
instability in gastrointestinal cancers. Nat Commun 9: 1520.

8. Katapadi VK, Nambiar M, Raghavan SC (2012) Potential G-
quadruplex formation at breakpoint regions of chromosomal
translocations in cancer may explain their fragility. Genomics 100: 72-
80.

9. De S, Michor F (2011) DNA secondary structures and epigenetic
determinants of cancer genome evolution. Nat Struct Mol Biol 18: 950-
955.

26



10. Bacolla A, Tainer JA, Vasquez KM, Cooper DN (2016) Translocation
and deletion breakpoints in cancer genomes are associated with
potential non-B DNA-forming sequences. Nucleic Acids Res 44: p. 5673-
88.

11. Grzeda KR, Royer-Bertrand B, Inaki K, Kim H, Hillmer AM, et al.
(2014) Functional chromatin features are associated with structural
mutations in cancer. BMC Genomics 15: 1013.

12. Garcia-Nieto PE, Schwartz EK, King DA, Paulsen J, Collas P, et al.
(2017) Carcinogen susceptibility is regulated by genome architecture
and predicts cancer mutagenesis. EMBO J 36: 2829-2843.

13. Georgakopoulos-Soares I, Morganella S, Jain N, Hemberg M, Nik-
Zainal S (2018) Noncanonical secondary structures arising from non-B
DNA motifs are determinants of mutagenesis. Genome Res 28: 1264-
1271.

14. Lin CY, Shukla A, Grady JP, Fink JL, Dray E, et al. (2018)
Translocation Breakpoints Preferentially Occur in Euchromatin and
Acrocentric Chromosomes. Cancers (Basel) 10. [Crossref]

15. Mitelman F, Johansson B, Mertens F, Schyman T, Mandahl N (2019)
Cancer chromosome breakpoints cluster in gene-rich genomic regions.
Genes Chromosomes Cancer 58: 149-154. [Crossref]

16. Lensing SV, Marsico G, Hansel-Hertsch R, Lam EY, Tannahill D, et
al. (2016) DSBCapture: in situ capture and sequencing of DNA breaks.
Nat Methods 13: 855- 857.

17. Crosetto N, Mitra A, Silva MJ, Bienko M, Dojer N, et al. (2013)
Nucleotide-resolution DNA double-strand break mapping by next-
generation sequencing. Nat Methods 10: 361-365. [Crossref]

18. Mourad R, Ginalski K, Legube G, Cuvier O (2018) Predicting double-
strand DNA breaks using epigenome marks or DNA at kilobase
resolution. Genome Biol 19: 34. [Crossref]

19. Zhang Y, Yang L, Kucherlapati M, Hadjipanayis A, Pantazi A, et al.
(2019) Global impact of somatic structural variation on the DNA
methylome of human cancers. Genome Biol 20: 209. [Crossref]

20. Cheloshkina, K., Poptsova, M. (2019). Tissue-specific impact of stem-
loops and quadruplexes on cancer breakpoints formation. BMC cancer,
19(1), 1-17.

27



21. The Cancer Genome Atlas (TCGA). Available from:
https:/ /www.cancer.gov/about-
nci/organization/ccg/research/structural-genomics/tcga

22. DNA Punctuation Project. Available from:
http://www.dnapuncutation.org

23. Huppert JL, Balasubramanian S. Prevalence of quadruplexes in the
human genome. Nucleic Acids Res. 2005;33(9):2908-16

24. Mitelman F, Johansson B, Mertens F. Mitelman database of
chromosome aberrations and gene fusions in cancer. 2019.
http://cgap.nci.nih.gov/Chromosomes/Mitelman

25. Cheloshkina K, Poptsova M (2020) Understanding cancer breakpoint
determinants with omics data. Integr Cancer Sci Therap 7: DOI:
10.15761 /ICST.1000333

26. Cheloshkina, K., & Poptsova, M. (2021). Comprehensive analysis of
cancer breakpoints reveals signatures of genetic and epigenetic

contribution to cancer genome rearrangements. PLOS Computational
Biology, 17(3), e1008749.

27. Cheloshkina, K., Bzhikhatlov, I., & Poptsova, M. (2020, December).
Cancer Breakpoint Hotspots Versus Individual Breakpoints Prediction
by Machine Learning Models. In International Symposium on

Bioinformatics Research and Applications (pp. 217-228). Springer,
Cham.

28. Liu, B., Lee, W.S., Yu, P.S., et al. 2002. Partially supervised
classification of text documents. In ICML. 387-394

29. Liu, B., Dai, Y., Li, X., et al. 2003. Building text classifiers using
positive and unlabeled examples. In Third IEEE International
Conference on Data Mining. IEEE179-IEEE186

30. Cheloshkina, K., Bzhikhatlov, 1., & Poptsova, M. (2021) Randomness
in cancer breakpoint formation. Journal of Computational Biology.

28



